GPS for Humanity
(1962 – 2012)

Many Applications for Worldwide Benefit –
some Anticipated and Others Surprising

A Tribute to the many Aerospace Engineers and supporters who
labored and sacrificed to make it happen!

Bradford Parkinson
Stanford University
GPtS –

the *Stealth* Utility

- Foundation: *Initial Studies*
- The *GPS Design Meeting*
- Key *Innovations* and Engineering *Challenges*
- *Applications for Humanity*
 Surprises and Innovations
- *Future* and *Threats*

Global Positioning and timing Service

“Success has a thousand Fathers, failure is an orphan.” — *Unknown Author*
Dr. Ivan Getting

Originally Classified Secret and could not be discussed in Public

– Not declassified until 1979

6 years after GPS Definition
Defining GPS - The Lonely Halls Meeting - GPS “Architected” - “Labor Day” Weekend
(Saturday, 1 Sept. 1973 – Monday, 3 Sept. 1973)

Brad Parkinson
USAF

Frank Butterfield
Aerospace Corp.

Gaylord Green
USAF

Steve Gilbert
USAF

MS Aero/Astro
Stanford

USN

Bill Huston
USN

Frank Butterfield
Aerospace Corp.

Mel Birnbaum
USAF

5/22/2012

GPS for Humanity © Bradford W. Parkinson
The most challenging alternative:

Gave 3D (4D) positioning and the user only needed a crystal clock:

- 4 satellites in view
- Passive Ranging

User Performed calculation
System Approved in Dec. '73

4 Satellites
Space **Hardened Atomic** Clocks
(4 **Ranging Measurements**)

Upload twice daily

Passive Ranging Signals
Code Division Multiple Access
(CDMA)

User
- 3 Dimensional
- Cheap XTAL Clock

Ground Control

A

5/22/2012 GPS for Humanity © Bradford W. Parkinson
Key New Technology - The Unique GPS Signal (CDMA) - now the Worldwide Standard

The “new” GPS signal (1972)

Figure 7.1 GPS signals including carrier, code, and navigation data.

Jim Spilker
Stanford Telecom
Selecting the Signal **Type** was not enough...

The Additional Frontiers:

Five Major Engineering Challenges *(For GPS Success)*

1. Details of GPS **CDMA signal structure**
 (coherence, acquisition, spreading, com. structure, error correction, message structure, etc.)

2. **Space-hardened** *(upper Van-Allen belt qualified)*
 atomic clocks

3. **Orbit prediction** - a few meters (URE) in **90,000 miles of travel**

4. **Spacecraft lifetimes** approaching ten years *(GPS affordability)*

5. **User equipment** that could eventually be miniaturized and produced at low cost.
Essential Political and Mentoring Support

The GPS “Godfather”

Mal Currie

Undersecretary of Research and Engineering for the Office of Defense
Sequel: GPS Launch History - 53 Successes

Block IIA
Rockwell
11 Launches

Block II
Rockwell
9 Launches

Block I
Rockwell
10 Launches

Block IIRM
Lockheed Martin
(9 Launches)

Block IIR
Lockheed Martin
(12 Launches)

Block IIF
Boeing/Rockwell
(2 Launches + 10 Planned)

Block IIIA
Lockheed Martin
(1ST Launch 2014)
Two Defining Events
(insured Availability of an accurate, worldwide system)

• **President Reagan Commits GPS to the World**
 – A KAL 007 civilian airliner shot down by Soviet Interceptors on 1 September 1983, over the Sea of Japan (Navigation Error?)
 – US President Ronald Reagan announced on 16 September 1983 that GPS would be freely available for civilian use to avert such a future incident
 – While the civil signal had been known and available since 1978, this was the first guarantee of worldwide availability

• **President Bill Clinton ordered Deliberate Errors (SA) turned off at midnight May 1, 2000 (UTC).**
 – Civilian GPS users around the world would no longer experience the up to 100 meter random errors that SA added
GPS Accuracies Today

<table>
<thead>
<tr>
<th>Category</th>
<th>General User</th>
<th>Aviation</th>
<th>Survey Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>2.7 Meters</td>
<td>2.5 Meters</td>
<td>0.1-1.0 mm</td>
</tr>
<tr>
<td></td>
<td>5.0 Meters</td>
<td>10.1 Meters</td>
<td>0.2-2.0 mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>10.3 Meters</td>
<td>4.5 Meters</td>
<td></td>
</tr>
</tbody>
</table>

Typical Differential GPS
(Uses GPS “Reference” Receiver) All are 95th Percentile

- Median of All Locations
- Worst Case Location
- Wide Area (FAA)
- National Differential (Ships and Farming)
- Real-Time Kinematic (AutoFarming and Bulldozers)
- Geodetic (Plate Tectonics)

Technical Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>General User</th>
<th>Aviation</th>
<th>Survey Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>2.7 Meters</td>
<td>2.5 Meters</td>
<td>0.1-1.0 mm</td>
</tr>
<tr>
<td></td>
<td>5.0 Meters</td>
<td>10.1 Meters</td>
<td>0.2-2.0 mm</td>
</tr>
<tr>
<td>Vertical</td>
<td>10.3 Meters</td>
<td>4.5 Meters</td>
<td></td>
</tr>
</tbody>
</table>

GPS for Humanity © Bradford W. Parkinson
Why would anyone want to track sheep with GPS?
“GPS for Humanity” Applications
(At least 10 major application categories)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation</td>
<td>(Area Navigation, Approach, Landing up to Cat III, NextGen)</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>(911, Ambulance, Fire, Police, Rescue Helicopters)</td>
</tr>
<tr>
<td>Timing</td>
<td>(Cell Phone Towers, Banking, Power Grid)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>(AutoFarming, Crop spraying, Precision Cultivating, Yield Assessment)</td>
</tr>
<tr>
<td>Rescue</td>
<td>(Emergency Beacons, Airplane and Ship Locaters, OnStar)</td>
</tr>
<tr>
<td>Recreational/Automotive</td>
<td>(GeoCaching, Turn by Turn Auto Guidance)</td>
</tr>
<tr>
<td>Tracking</td>
<td>(Fleets, Children, Animals, Alzheimer’s victims, Cargo, Parolees, Criminals)</td>
</tr>
<tr>
<td>Scientific</td>
<td>(Earth Movement, Atmospheric, Ionospheric, Earth’s shape)</td>
</tr>
<tr>
<td>Military</td>
<td>(Rescue, Precision Weapon Delivery, Unit and individual location)</td>
</tr>
<tr>
<td>Robotics/Machine Control</td>
<td>(Many)</td>
</tr>
</tbody>
</table>
• **The Expected in 1974**: Aircraft Navigation
• **The Surprise - 1992**: Hands–Off to Touchdown!

Demo: 110 Landings with a Commercial Boeing 737
(With Dave Lawrence, Stu Cobb, Boris Pervan)
“GPS for Humanity” Applications

Aviation
- Area Navigation
- Non-Precision & Precision Approach
- *Pathway in the Sky*
- Automatic Dependent Surveillance (ADS-B) (tracking)
- Landing up to Cat III
- Runway Incursion Warning & Tracking
- *NextGen*
Aviation Example: Pathway in the Sky
(Enabled by Precision 3-D GPS - Pioneered by Dr. Andy Barrows)

- Pathway calculated as series of Pentagons
- Own Plane predicted position shown in center
- Intuitive projection of 3-D
- Especially suited for curving and dog-leg approaches
- Real data show errors reduced to 1/3 of best conventional technique

5/22/2012
GPS for Humanity © Bradford W. Parkinson
GPS/FANS based Tailored Arrivals – UAL HNL-SFO

True 4-D procedure “tailored” for flight using continuous descent

Average Fuel Saved (Boeing 747) = 1600 lbs!
(There are ~28,500 Commercial flights in the US per Day!!!)

Payoffs:
• Better Safety
• Less Delays
• More Airways Capacity
• Smaller Fuel and Carbon Footprint

NextGen
• FAA Air Traffic Control for the Future
“GPS for Humanity” Applications

Emergency Services (Land)

- 911
- Ambulance
- Fire
- Police
- Rescue Helicopters
- Response Tracking

Over 150,000 users in US –

GPS used to:
- **Pinpoint** situation location (e.g. 911)
- **Vector** police/ambulance responder
- Allow dispatcher to precisely **track progress**
Coordinated International Time (UTC)USNO
Clock Vault, Washington, DC – 44 Atomic
Clocks

Timing and Frequency
➢ Cell Phone Towers
➢ Banking
➢ Power Grid
➢ Coordinated International Time

“A man with a watch knows what time it is. A man with two watches is never sure.” -- Segal’s Law

GPS Time Transfer Capability far better than Spec--
• Specified Time transfer Capability – 100 Nanoseconds
• Current capability 10 Nanoseconds
The Expected in 1974: Land Navigation
The Surprise 1996: Automatic Steering to an inch
3 Axis attitude to 1.0 degrees

Note four antennas to provide
GPS Attitude 1.0°

Tracking Test @ 5 m/s – worst error ~ 3 inches!

Now a >$800M/ year Market

Stanford Robot Tractor – Mike O’Connor, Tom Bell, Andy

Rekow
“GPS for Humanity” Applications

- **Agriculture and Auto-Farming**
 - Precision Cultivating
 - Precision Planting
 - **Crop Spraying** (Herbicide, Fertilizer, Pesticide)
 - Aircraft/Helicopter
 - Tractor
 - Yield Assessment
Compelling Need to Reduce Fertilizer Use

Fertilizer is expensive
- >$18B/year U.S.
- 30-50% of operating costs for corn & wheat
- Nitrogen use is outpacing increases in population / land

Fertilizer runoff is damaging the environment
- Oxygen depletion triggered by excessive N/P levels
Hands-free Steering = 8-10% Reduction

Potential **savings per year:**

$18B \times (8\% \text{ to } 10\%) =$

$\mathbf{1.4B \text{ to } 1.8B}$

(US only)

• Automated steering provides clear benefits to growers
 – Runs day, night or in fog
 – Less overlap = lower fuel/labor costs
 – More rows = greater yields

• Results are visible, and economic value is compelling
Further Improvements are Possible

- Currently Growers over-apply fertilizers to ensure high yields (Driven by worst-case need!)
- Industry developing **GPS-tagged soil nutrient measurement** techniques.
- Will lead to more substantial savings